
AD-A259 436

Upside-Down Meta- Interpret at ion
of the Model Elimination Theorem-Proving Procedure

for Deduction and Abduction,
D T I rticl Ite Mark E. Stickel

CArtificial Intelligence Center Institute for New Generation
ELECTE SRI International Computer Technology

DEC 3 0 1992 Menlo Park, California Tokyo, JapanD•D September 14, 1992

Abstract

Typical bottom-up, forward-chaining reasoning systems such as hyperresolution lack goal-
directedness while typical top-down, backward-chaining reasoning systems like Prolog or
model elimination repeatedly solve the same goals. Reasoning systems that are goal-directed
and avoid repeatedly solving the same goals can be constructed by formulating the top-
down methods metatheoretically for execution by a bottom-up reasoning system (hence,
"upside-down meta-interpretation" is being used). This also facilitates the use of flexible
search strategies, such as merit-ordered search, that are common to bottom-up interpreters.
The model elimination theorem proving procedure, its extension by an assumption rule for
abduction and its restriction to Horn clauses, are adapted here for such upside-down meta-
interpretation. This work can be regarded as an extension of the magic set method for
query evaluation in deductive databases to both non-Horn clauses and abductive reasoning.

1 Introduction

Bottom-up, forward-chaining reasoning systems derive new facts from already established
ones. The implication Ai,...,Am D C is interpreted procedurally by zuch systems to
derive the fact C from the facts A 1,...,Am. Hyperresolution [38, 46] is a typical bottom-
up reasoning system. Top-down, backward-chaining reasoning systems, on the other hand,
derive new subgoals from existing goals. The implication A1 ,...,A, D C' is interpreted
procedurally by such systems to derive each of the subgoals A1 ,...,A,A from the goal

C. Ordered input resolution (for Horn clauses, used by Prolog) and the model elimination
procedure [22, 23] (for arbitrary clauses, used by PTTP [41]) are typical top-down reasoning
systems. We assume the reader is already familiar with these inference procedures.

Both bottom-up and top-down methods have well known weaknesses. Bottom-up rea-
soning is often not goal-directed. For example, if the initial goal is translated for refutation
into a negative clause, hyperresolution can use the goal only in the final step of a proof.
Nevertheless, simply using a bottom-up reasoning method is often the right approach. For

'This research was supported by the National Science Foundation under Grant CCR-8922330 and by
the Defense Advanced Research Projects Agency under Office of Naval Research Contract N00014-90-C-
0220. The views and conclusions contained herein are those of the author and should not be interpreted as
necessarily representing the official policies, either expressed or implied, of the National Science Foundation.
the Defense Advanced Research Projects Agency, or the United States government.

Tbi'sV5, 1)::, :'•,' "'12' `PPo,,
92-32971 1 ui: trtle; ,t

d cbtrwbUtioZ is uflh~fit

-92 12 28 146

example, group theory or condensed detachment problems benefit little from a top-down
approach, since irrelevant axioms are absent and top-down reasoning (quickly produces very
general goals that fail to constrain the search. Oil tile other hand. in deductive database,
logic programming, and artificial intelligence applications, the lack of goal-directedness of

pure bottom-up reasoning is a crucial defect. In principle, it would require enumeration of
all consequences of the axioms until a fact matching the query is derived, a foolish approach
in the presence of many irrelevant axioms.

The major problem with top-down reasoning is that it often results in goals being
derived and proved more than once, which may result in large, redundant search spaces.
For example, when Prolog tries to prove P A Q, backtracking search will cause it to try to
prove Q once for every proof of P it finds. This repeated work can be extraordinarily costly.
"Intelligent backtracking" can reduce but not eliminate the problem. Redundancy can also
occur in bottom-up methods in the form of facts being derived more than once. However,

there the redundancy is controlled by subsumption. which deletes duplicate or less general
facts. Although methods such as subsumption are costly and can drasticall* ieduce Ole

rate of inference, reduced search-space size often compensates for the lower inference rate.
A second problem with top-down reasoning systems is that they typically have much

less flexibility in specifying order of search than bottom-up reasoning systems. Prolog and

PTTP, for example, use depth-first search with backtracking for an efficient implementation
with minimal storage requirements by representing only the goals on a single branch of the
search space at a time, but this makes it impossible to direct search by jumping to a
more favorable branch. Hyperresolution, on the other hand, can maintain a list of facts in
order of preference for inference. Lack of control over search is not a necessary limitation

of top-down reasoning systems, but rather an observation about typical ones. It is thus
possible to adapt either bottom-up or top-down reasoning methods to produce a goal-

directed reasoning system with a nonredundant search space and flexible search strategy.
We choose to adapt bottom-up reasoning methods because their implemcntations appear to
be closer to this ideal already. The prototypical bottom-up reasoning system hyperresolution
already possesses effective methods for controlling redundancy (subsumption) and ordering
the search space (merit-ordered search). As we shall see, it is feasible to make this bottom-

up reasoning method more goal-directed.
The approach we adopt is basically an extension of the magic set method [3, 44] for

query evaluation in deductive databases. We will translate Horn clauses similarly to the
magic set method, and then extend the translation to abductive reasoning andi non-Horn

clauses.
The extension to non-Horn clauses is based on the model elimination theorem-proving

procedure. Model elimination is a complete theorem-proving procedure for the full first-
order predicate calculus that possesses the desirable properties of linear proofs. literal or-
dering, set of support, and no need for factoring. PTTP's implementation of the model
elimination procedure has as well a high inference rate with minimal storage requirements.

The largest problem with model elimination and PTTP is the failure to control search-space
redundancy. Here, we demonstrate how, while unfortunately sacrificing PTTIP's imiplenmen-
tation approach with its high inference rate and minimal storage requirements, we can

make search much less redundant by means of "upside-down meta-interpretation", i.e.. by
executing the top-down model elimination procedure by a bottom-up interpreter.

2 Di I-

-° A,1

Our approach is to start with top-down, backward-chaining input resolution and trans-
form the clauses for execution by a bottom-up interpreter such as hyperresolution. Instead
of a goal-subgoal tree being created, literals of the form goal(G) are derived. Use of the imi-
plication A A... A A,, D C to derive the fact C from facts .A..... A,,, is made contingent on
the existence of goal(C) by use of the translated clause goal(C)Afact(A:)A.. Afact(A..) -
fact(C). The translation is extended to impose a requirement of left-to-right solution, as in
Prolog and the model elimination procedare. In many cases, this can substantially reduce
the search space as solutions for earlier goals instantiate later goals.

Abductive reasoning (abduction) is becoming an important application of extended
Prolog and model elimination systems. Abduction extends deduction to the case of partial
proofs with assumptions that, if they could be proved, would allow a proof to be completed.
We extend our translation method to abduction. The added possibility in abduction of
assuming as well as proving formulas makes the search space for abduction problems larger
than for deduction problems with the same axioms. This, plus the fact that many applica-
tions of abduction demand rich knowldge bases with many irrelevant clauses, means that
there may be an even bigger payoff for this method in the case of abduction than deduction.

Clauses used in Prolog and model elimination inference are translated for execution by
a bottom-up interpreter using metapredicates goal, fact, and cont (for "continuations".
which concisely encode what goals we are trying to solve, which of their subgoals have been
solved, and which subgoals remain). New facts, goals, and continuations are derived by
bottom-up inference in a faithful encoding of the Prolog or model elimination search tree,
possibly in a different order depending on the chosen search strategy, and with redundant
subtrees eliminable by the reuse of facts derived earlier and by subsumption. The time
complexity in the worst case, when there is no eliminable redundancy, should be the same
order as that of Prolog or model elimination when the latter's search strategy is imitated
(a three-fold increase in length of the proof may occur, as a single literal in the search tree
may be represented by goal, fact, and cont literals in the encoding). In the case of Horn
clauses, the procedure closely resembles hyperresolution in behavior, except hyperresolution
operations are allowed only if they derive a fact that matches a top-down derived goal.

Because this method is a new approach to implementing standard theorem proving
procedures (Prolog, model elimination, and their extensions for abduction) instead of a
new theorem-proving procedure, we will omit soundness and completeness results. Tile
benefit of the new approach in eliminating redundancy should be obvious. Gains from
eliminating redundancy can be arbitrarily large.

In Section 2, we recount past approaches to the problem of redundancy in the model
elimination procedure and cite their disadvantages, which are absent in the new approach. In
Section 3, we describe upside-down meta-interpretation of Prolog-style deduction with Horn
clauses. This, except for the remarks on generalizing subsumption and generalizing derived
facts, is essentially the magic set method. In Section 4, the method is extended to abduction
by allowing conditional facts accompanied by assumptions sufficient to establish them. In
Section 5, the method for abduction with Horn clauses is transformed by different handling
of assumptions into a method for upside-down meta-interpretation of model-elimination-
style deduction with non-Horn clauses. Deduction with non-Horn clauses is then extended
to abduction with non-Horn clauses in Section 6. Related work is described in Section 7.

3

2 Other Methods for Eliminating Redundancy

There are several other approaches to eliminating redundancy in model elimination and
similar procedures. Factoring is the earliest method for eliminating duplicate goals and is
required for completeness in many resolution procedures, though not for Prolog or model
elimination. It is clearly beneficial and can be made mandatory in the propositional case.
However, in the first-order case when goals must be unified during factoring, factoring must
be optional and proofs with and without the goals factored must both be sought. This results
in an increase in the breadth of the search space: the depth of the search space is reduced
in compensation only if a shorter proof can be found with factoring than without, which is
too rarely the case. Unifying goals often results in clauses becoming overinstantiated and
not usable in a proof.

The graph construction procedure [39] adds the C-reduction operation to the model
elimination procedure. C-reduction resembles factoring except that it unifies an unproved
goal with a proved goal instead of another unproved goal. This is an improvement because
unprovable goals are never factored. For example, if a pair of factorable goals do not happen
to have a common provable instance, factoring them will ultimately result in failure. If. as in
the graph construction procedure, it is necessary for one to be proved before being factored
with the other, the goals will no longer be factorable after one of them is instantiated by
its proof.

Both factoring and C-reduction affect only the descendants of the factored clause. No
information about provable goals is made available to other parts of the search space.
Lemmas [22, 23] are extra clauses derivable by the model elimination procedure that contain
proved goals. Lemmas are essentially previously solved goals. They are not required for
completeness, but their use can shorten proofs by matching a goal with a lemma instead
of reproving it. Unlike factoring and C-reduction, lemmas are available throughout the
search space after they are derived, not just in descendant clauses. However, like factoring
and C-reduction, lemmas increase the breadth of the search space, by allowing proofs from
lemmas as well as axioms. Lemmas in the model elimination procedure save information
about successful but not unsuccessful proof attempts. There nevertheless is the obvious
notion of "failure lemmas"--remembered goals that could not be proved. Lemmas have
been used in database query evaluation [5, 12, 43] methods and in other theorem proving
procedures [13, 27, 32], often under the name "caching", although we use the that term to
refer to a slightly different concept.

Caching is the most complete approach for eliminating redundancy in top-down reason-
ing systems. By saving goals as well as solutions, caching can record information about
both success and failure. In a depth-bounded reasoner like PTTP. the cache would contain
goals and associated depth bounds asserting that the cache contains all solutions to the
goal discoverable with that depth bound. When attempting to prove a goal with a depth
bound, if the gual or P more general one with the same or greater depth bound is stored
in the cache, solutions are retrieved from the cache instead of searching for solutions by
backward-chaining. The difference between lemmas and caching is that lemmas pre treated
as extra axioms and broaden the search while caching replaces the search for solutions of a
goal by cache lookup. Only caching of the methods we have described uniformly replaces
search instead of adding alternative.s to it in 01i, hope of finding n Pb,,-tr pro,,[. Caching

4

can easily reduce the size of the search space even if the proof found is not shorter. Many
successful experiments with lemmas and caching are reported on in [1].

Caching will surely be more complicated and less effective for the full model elimination
procedure than for the Prolog subset on which it has been successfully tested. In the full
procedure, solutions to a goal no longer depend on the goal formula alone, but also on its
ancestor goals. Even if goals recur frequently, they may rarely recur with a set of ancestor
goals that can be found in the cache. A refinement of the model elimination procedure that
uses negative but not positive ancestor goals may make looking up solutions in the cache
succeed more frequently [33], but probably still not often enough. Although caching can
eliminate redundant search, it can contribute little to solving the other problem of top-down
reasoning systems, the inflexibility of their search strategy.

3 Deduction with Horn Clauses

A Horn clause problem is composed of a set of facts F, a set of rules A, A .. A Am D C
with m > 1, and a goal G, where F, Ai, C, and G are all atomic formulas. Requiring the
goal to be atomic is not a significant restriction. A conjunctive goal G, A ... A G, can be

converted into the rule G, A ... A G, D G for atomic goal G.
A rule A1 A ... A Am D C can be interpreted in top-down or bottom-up fashion. The

top-down interpretation is:

From the goal C derive the goals A 1,..., Am.

A problem is solved when one can recursively derive from the goal G a set of subgoals
all of which match initial facts F. Input resolution, as in Prolog, is a standard top-down
reasoning method. The bottom-up interpretation is:

Derive the fact C from the facts A1 ,... , Am.

A problem is solved when a fact matching the goal G is derived from the initial facts F.
Hyperresolution, for example, is a standard bottom-up reasoning method.

In the following, we assume a bottom-up reasoning system such as hyperresolution with
subsumption. The rule A1 A ... A Am - C 2 is interpreted as: if A, Am are present,
then C can be derived. The separate roles of an atomic formula L as a fact or goal will be
distinguished by putting L as an argument of the fact or goal metapredicate.

Top-down and bottom-up interpretations of A1 A ... A Am D C are expressed metathe-

oretically by

goal(C) - goal(A1)

goal(C) - goal(Am)

and

fact(A1),. A fact(Am) -, fact(C)

.':of- #,h!e vie of - for exer,ptablc luics vei-su. D lot assertions.

5

respectively.
We now connect the goal and fact rules. The fact rule can be modified and used in

conjunction with the goal rules to provide bottom-up execution with top-down filtering:

goal(C) -. goal(A1)

goal(C) -- goal(Am)
goal(C) A fact(Ai) A ... A fact(A,,) -- fact(C)

Goals are generated in simulated top-down fashion, but bottom-up reasoning is constrained:
fact(C) can only be derived if goal(C) is present. Note that the clauses resulting from this
translation and all the extensions we present are Horn. Thus, a bottom-up interpreter such
as hyperresolution will derive only unit clauses using them.

Subsumption is used to eliminate duplicate or less general facts or goals. Facts. once
derived, can be used again in the solution of other goals. The goal derivation rules employ
upside-down meta-interpretation, since the meaning of the rules is the top-down genera-
tion of subgoals, but the rules themselves are executed bottom-up. Each initial fact F is
translated to fact(F) and the initial goal is translated to goal(G). Proofs are completed
by deriving instances of fact(G).

This translation of the problem is often sufficient. However, it is sometimes better in
the case of clauses with more than one antecedent literal to create subgoals sequentially,
e.g., to generate (an appropriate instance of) goal(Ai) only after goals A1. ... Ai- have
been solved. This is especially important in logic-programming problems, in which some
subgoals compute values used as inputs to later subgoals. For example, the rule fib(x, y) A

fib(s(x), z)Aplus(y, z, w) D fib(s(s(x)), w) for computing Fibonacci numbers could be used
to create the subgoals fib(3, y), fib(4, z), and plus(y, z, w) from the goal fib(5, w). It would
be better to delay creating the subgoal plus(y,z,w) until after fib(3,y) and fib(4, z) are
solved, thus instantiating y and z.

To impose a left-to-right execution order for subgoals so that goal(A i+1) is not intro-
duced until a solution to goal(Ai) has been found, "continuation" predicates are used to
encode the state of matching antecedent literals of a rule. Let k be a unique number for

the rule A1 A ... A Am D C with m > 2 and let V be a term that contains variables of tile
rule except those in the head.3 The rule is translated as follows:4

goal(C) - goal(A1)
goal(C) A fact(Al) -* contk,2 (C, V) A goal(A 2)
contk, 2 (C, V) A fact(A2) - contk,3 (C, V) A goal(A3)

contk,ml(C, I7) A fact(Am-i) - contk,m(C, V) A goal(Am)
con•k,m(C, V) A fact(Am) -- fact(C)

3 Not all variables need be included in every continuation. For contk,,. it is sufficient to include
(Vars({A1 ,. A... A- 1 }) n Vars({A A,)) - Var.x(C), where Vars(X) is the set of variables appearing
in literal or set of literals X.

4Some of these rules have multiliteral consequents contk,(C, V) A goal(A,), which means that both
c',nt,(C. 1V) and goal(A,) are to be derived. If standard, clausal hyperresolution is used as the bottom-up
interpreter, they can be split into s-p.--ite rules ...- contk,,(C, V) and contk,(C, V) - goal(A,).

6

The literals contkA(C, I") identify which subgoal is being solved with what substitution.
A classic example of poor, highly redundant top-down execution behavior is the com-

putation of Fibonacci numbers. The computation can be defined by:

a. plus(O,x,x)
b. plus(x,y,z) D plus(s(x),y,s(z))
c. fib(O,O)
d. fib(s(O), s(O))
e. fib(x,y) A fib(s(x),z)Aplus(y,z,w) D fib(s(s(x)),uw)

which can be translated to:5

1. fact(plus(O, x, x))
2. goal(plus(s(x), y, s(z))) - goal(plus(x, y, z))
3. goal(plus(s(x), y, s(z))) A fact(plus(x, y, z)) -- fact(plus(s(x). y. s(z)))
4. fact(fib(O,O))
5. fact(fib(s(O),s(O)))
6. goal(fib(s(s(x)), w)) -- goal(fib(x, y))
7. goal(fib(s(s(x)), w)) A fact(fib(x,y)) -,

conte,2(f ib(s(s(x)), w), y) A goal(f ib(s(x), z))
8. cont,,2(fib(s(s(x)),w), y) A fact(fib(s(x), z)) -

conte 3(fib(s(s(x)), w), y, z) A goal(plus(y, z, w))

9. cont,, 3(fib(s(s(x)), w), y, z) A fact(plus(y, z, w)) - fact(fib(s(s(x)), w))

whose execution is substantially less redundant because Fibonacci numbers do not need to
be recomputed.

3.1 Generalizing Subsumption

Subsumption is the principal mechanism for eliminating redundancy in bottom-up reason-
ing. If fact(L) and fact(La) are both derived, then fact(La) can be deleted. Likewise,
if goal(L) and goal(La) are both derived, then goal(La) can be deleted. Similarly for
contk,i(C, V) and contk,i(Ca, Va). These deletions can be accomplished by ordinary sub-
sumption.

It is beneficial to generalize this. The following instances of generalized subsumption
are possible:

"* fact(L) subsumes goal(L'), where L' = La for some substitution a. Goals can be
deleted if they are the same as or more specific than a fact. 6

"• fact(L) subsumes contk,i(C,V), where C = La for some substitution a. Continua-
tions can be deleted if they lead only to the derivation of facts the same as or more
specific than an existing one.

5'nstead of a variable-containing term V, we write all the variables as separate arguments of conftk,.
6Although derived facts are always instances of the goals that lead to them, an initial fact might be

more general than a goal, and it is also possible to modify the method to derive more general facts (see
Section 3.2).

7

A stronger deletion strategy would also delete subgoals of deleted goals. Goal-subgoal
relationships would have to be recorded so that a subgoal is deleted only if all the goals of
which it is a subgoal have been deleted.

3.2 Generalizing Derived Facts

Although unnecessary recomputation of Fibonacci numbers is successfully eliminated in the
example, bottom-up interpretation unfiltered by goals could yield a still shorter proof that
uses fewer, more general derived facts. The problem is that derived facts are sometimes
overly specific. This is a result of their having been derived with top-down filtering.

It is possible to derive plus(l, y, s(y)) from clauses a and b, and it is likewise possible to
derive fact(plus(1,y,s(y))) from 1-3 when given the general goal goal(plus(1, y.z)). How-
ever, if more specific goals such as goal(plus(1, 1, z)). goal(plus(1.2, z)). and goal(pilus(1.3. z)))
are given, as they are when these rules are 1,sed to compute Fibonacci numbers. only the
more specific facts such as fact(plus(l, 1,2)). fact(plus(1.2,3)), and fact(plus(1,3,4)) will
be derived. Computing larger Fibonacci numbers results in many more repeated instances
of computing x + Yli X + Y2 The length of each of these derivations is linear in the
size of x.

When goal(L) leads to the derivation of fact(Lal), the problem of possible overspeci-
ficity of fact(Larli) can be overcome by reexecuting the same inference steps starting with
goal(x) (i.e., with a free variable as goal formula) instead of goal(L) and ending with
fact(xa 2), which is stored instead of fact(Lal). The result fact(xa 2) is an equally valid
conclusion that is either a generalization of or equivalent to fact(Lil). There is no danger
in deriving these more general facts. They are more easily used. but top-down filtering still
prevents their use except in the presence of a relevant goal.

Note that the problem of deriving overly specific goals is not universal. From ground
facts and range-restricted rules (those in which every variable in a positive literal also
appears in a negative literal), which are customary in databases, bottom-up reasoning can
derive only ground facts, and top-down filtering cannot result in anything more specific. The
magic set method for range-restricted databases thus has no need for fact generalization.

4 Abduction with Horn Clauses

We shall now extend the method to abduction with Horn clauses. First, we give a general
description of abduction, not restricted to Horn clauses. We will then extend the method
in Section 3 to a method for abduction with Horn clauses. Section 6 describes abduction
with non-Horn clauses.

Abduction is the form of reasoning that allows us to hypothesize that P is true if
we know that P D Q is true and we are trying to explain why Q is true [31]. It can
naturally be viewed as an extension of deduction. Instead of being required to prove a
formula. abduction allows us to identify sets of hypotheses that. if they could be proved.
would allow a proof of the formula to be completed. This style of reasoning has been
applied to diagnosis [8, 29, 30, 36], design synthesis [15], theory formation [35], default and
circumscriptive reasoning [35, 37]. and natural language interpretation [7, 18, 28, 42].

8

A widespread approach for implementing abduction is top-down, backward-chaininfg

reasoning with some literals being allowed to be assumed instead of proved [S,. 18,. 19. 35.

36. 37, 40, 42], i.e.. an inference rule that assumes a literal is added to Prolog-like inference

(in the case of Horn clauses) or the model elimination procedure. Standard top-down

reasoning can be viewed as operating on a list of goals. removing goals wihe, t hey match
facts, adding subgoals when a goal matches the head of a rule. an(l succeeding only when

the list becomes enmpty. Abductive reasoning allows this process to "skip" certain goals [19].

An abductive proof or explanation is found when only skipped goals remain. These are the

assumptions that would allow completion of the proof.
The presence of an additional inference rule that allows literals to be either assumed

or proved makes the search space for abduction even larger than that for deduction. This

provides a strong motivation for upside-down meta-interpretat ion of the top-down inference

rules for abduction in order to eliminate search-space redundancy. Recent work on using
an ATMS [9, 10] to cache results of abductive reasoning [26] has the same objective as ours

of eliminating redundant work on duplicate goals and has already demonistrated significant

improvement. This is done for the case of Horn clauses with some limitation on unification
as a result of using an ATMS.

For some theory T and goal G, abduction consists of finding sets of assumptions H and
substitutions 0 such that GO is a consequence of T U H, i.e., H D GO is a consequence of T.

We require that H consist of assumable atomic formulas with designated predicate symbols.
We focus on only one element of abduction here, namely, finding H and GO. It is a

nearly universal requirement that H be consistent with T, but this must be determined by
some other means (e.g.. by attempting to refute T U H and failing) and is undecidable in

general. Many abductive proofs can usually be f ind. and selection of a preferred abductive

proof is a vital part of abduction. One criterioi is that an abductive proof that requir,,; a

subset of the assumptions required by another one is preferred. Generalized subsumption

of derived facts allows us to discard such less general proofs. Assigning costs to assumable
formulas is a popular method to hell) choose among alternative proofs and is the focus of

much recent work on abduction [6. 18, 42]. We believe the top-down meta-interpretation
approach for abduction can be adapted to such cost-based abduction, but this is outside

the scope of the present work.
To support abductive reasoning, the metatheoretic predicate fact is extended to two

arguments: an atomic formula and a set of assumptions sufficient to prove it. Bottom-up
interpretation of the rule A1 A ... A Am D C can be expressed by

fact(A1 , HI) A ... A fact(A,,. H,,) - fact(C. H1 u... u H,,)

If each Ai is true, assuming Hi, then C is true, assuming the union of the assumptions. Each

initial fact F is translated to fact(F,O). If atomic formula L is assumable, fact(L, {L}) is
included in the initial facts; its meaning is that L is allowed to be proved by assuming L.

Note that fact(X, {X}) is a tautology, i.e., L D L or L V - L.

Our rules for Horn clause deduction by bottom-up execution with top-down filtering
and left-to-right solution of goals can also be easily adapted to Horn clause abduction. The

general case of the translation of A1 A ... A Am D C is

9

goal(C) - goal(A1)
goal(C) A fact(Al, Hif) - contk, 2((, Hi, V7) A goal(.. 2)

contk.2 (C, H. V) A fact(A2 , H2) - Cou1tk.3 (C, H U H,2, V) A goal(A 3)

contkm.-l(C, H, l')A fact(A,-j. 1 Hm -) - Co1tkm,(C(. if u H,,- I. V) Agoal(..l,,,)
COnltkm(C. H, V) A f act(Am, Hn) -- fact(C. It U II,,j)

where H, H 1i Hm are variables whose values during execution will be sets of assumptions

used in deriving a continuation or fact.
The procedure is complete: for any H and 60 such that H is composed of assumable

literals, H D GO is a consequence of theory T, and H is consistent with T,7 this procedure
can derive some fact(G', H') such that G'a = GO and H'a C H for some substitution a.

Subsumption can be further generalized to take account of assumptions. The following
instances of generalized subsumption are possible:

"* fact(L,H) subsumes fact(L',H'), where L' - La and H' D Ha for some substitution

0".

"* fact(L, H) subsumes cotk71 (C, H'. V), where C = La and H' D Har for some substi-
tution a.

"* fact(L,O) subsumes goal(L'), where L' = La for some substitution a.

"* contk~i(C, H, V) subsumes contk,i(C', H', I'), where C' = Ca, H' D Ha, and V' = Va,

for some substitution ar.

As an example, consider the following theory used to explain a bicycle's wobbly wheel [21].

Here, broken-spokes, punctured-tube, and leaky-value are assumable predicates that can
be used to create an explanation.

a. flat-tire D wobbly-wheel
b. broken-spokes D wobbly-wheel
c. punctured-tube D flat-tire

d. leaky-valve D flat-tire

The translation is

1. fact(broken-spokes, {broken-spokes})

2. fact (punctured-tube, {punct ured- tube})
3. fact(leaky-valve, {leaky-valve})
4. goal(wobbly-wheel) -- goal(flat-tire)
5. goal(wobbly-wheel) A fact(flat-tire, H) - fact(wobbly- wheel. H)
6. goal(wobbly-wheel) - goal(broken-spokes)

7. goal(wobbly-wheel) A fact(broken-spokes, H) - fact(wobbly-wheel, H)

8. goal(flat-tire) , goal(punctured-tube)
9. goal(flat-tire) A fact(punctured-tube, H) - fact(flat-tire, H)

7Although the procedure may generate abductive proofs with hypotheses inconsistent with T, it is not
guaranteed to and we would not want it to generate all sets of inconsistent hypotheses.

10

10. goal(flat-tire) - goal(lfaky-tal ()
11. goal(flat-tirf) A fact(l~aky- ,alc. 1H) - fact(flat-tirt. I)

Execution of these rules with the goal of explaining a wobbly wheel follows. Explanations
are found on lines 16, 19, and 21, e.g., if there was a punctured tube, then there would be
a wobbly wheel.

12. goal(wobbly-wheel) initial goal
13. goal(flat-tire) subgoal of 12 by 4
14. goal(punctured-tube) subgoal of 1:3 by v8
15. fact(flat-tire, {punctured-tube}) solution of 13 by 2,9
16. fact(wobbly-wheel, {punctured-tube}) solution of 12 by 15.5
17. goal(leaky-valve) subgoal of 13 by 10
18. fact(flat-tire, {leaky-valve}) solution of 13 by 3,11
19. fact(wobbly-wheel, {leaky-valve}) solution of 12 by 18,5
20. goal(broken-spokes) subgoal of 12 by 6
21. fact(wobbly-wheel, {broken-spokes}) solution of 12 by 1,7

5 Deduction with Non-Horn Clauses

Using the method for abduction with Horn clauses as a starting point, we now extend
our upside-down meta-interpretation method to deduction with possibly non-Horn clauses.
Abduction will be added again in Section 6. Facts, goals, and rules can be written with
literals instead of just atomic formulas. We require that contrapositives of the rules be
present. That is, if A1 A ... A Am D C is a rule, then m other rules of the form A D -,A,
must also be provided, where A is the conjunction of A 1,..., Ai-l, A,+1 ... , A, --C, and.
for any literal L, -4L denotes its complement.

The model elimination (ME) theorem-proving procedure has a single inference rule in
addition to Prolog's:

If the current goal is unifiable with the complement of one of its ancestor goals.
then apply the unifying substitution and treat the current goal as if it were
solved.

This added inference operation is the ME reduction operation. The normal Prolog inference
operation is the ME extension operation. The two together comprise a complete inference
procedure for the full first-order predicate calculus, not just the Horn-clause subset. Unless
the unifying substitution (unifier) is empty (i.e., the goal and its ancestor goal are exactly
complementary), the reduction operation is used as an alternative to, not a substitute for,
solving the goal by extension or by reduction with a different ancestor goal.

Similarly to abduction with Horn clauses, we begin by formulating model elimination
procedure in terms of deriving facts that follow from a set of assumptions.

The metatheoretic predicate fact has two arguments: a literal and a set of assumptions
sufficient to prove it. Bottom-up interpretation of the rule Al , A Am D C can be
expressed by

11

fact(A1,H 1) A .. - fact(A.,, H) - fact(C.(HI U ... U H,,) - - C)

If each A, is true. assuming H,. then C is true, assuming tL, union of lhe assumptions.
excluding -C'. This description is accurate for the ground case. In the nodground case. it is
necessary to consider unifying -C with other assumptions to derive alternative results. In
that way, diffrein.t instances of C can be shiown to follow from (different sets of assumptions.
For example. suppose -,C is not a member of H1 U .. - u H,. We conclude that C is true.
assuming H1 U U Hfl. l' -C is unifiable (by unifier (7) with a member of H, U... U H,f.
we can also concli,,e that ,',,; is true, assuming the smaller set (Hla U ... u Hnca) - -C(a.

Single-literal fac~s F are translated to fact(F.0). The single literal fact(x. {x}) is also
included. Its interpretation is that any literal x is a consequence of its own assumption.
Note again that fact(x. {x}) is a tautology. i.e., x D x or .r I.' -x.

This differs frm upside-down ;'eta-interpretation of abduction wilh Horn clauses bf-
cause all literals are treated as ass :n. ole (because Lny literal might be solvable by reduction
with a complementary ancestor goal) and because -C can be omitted froii the set of as-
sumptions used.

Top-down filtriihg by goals along with loft-to-right execution order for ,,ubgoils can be

accomplished alnost exactly -as in the case of abduction for Horn claues:

goal(C) -- oal(AI)
goal(C) A fact(A, Hh) - ontk,2(C, Hi, V) A goal(A 2)
contk,2(C.H, V) A fact(A2 ,H 2) - contk.3(C,H u H. i, goal(A3)

cont k,ni (C, H, V) A fact(A-,Hml) -- COntk,,m(C. t U H, 1. V) Agoal(A,m)

COIttk,m(C.H.V) A fact(A,.Hm),- fact(C(H U Hm) -C)

Note the use ol -C in the final clause.
Performance of this code is likeiy to be very poor. Assumptions can be made easily but

can be removed only in the presence of a complementary ancestor goal: a proof is complete
only when the assumption,-free fact(Go,,O) is derived for goal(G). It is apparent that more
control over the generation of facts is required. Top-down filte:.;,g is done above using only
the form of the goal; we propose top-down filtering also take account of the goal's ancestors.
so that a fact will not be derived unless a goal exists whose ancestor list includes all the
fact's the asiu:tiptions.

For top-down meta-interpretation of the model eli,, 'nation procedure for deduction.
we include another araument, P, in goals and continuations that specifies the set of as-
sumptions (oltained from negations of ancestor goals) that are permitted to be made in
the solution of a goal. Siegel likewise replaced model elimination's represenltation of goal-
subgoal relationships in chains by directly associating a goal with its set of ancestors [40].
' he translated rules will not be able to derive facts that require assun.ptions outside this
set.

goal(C, P) - goal(A 1, P U {",C})
goal(C, P) A fact(A1, H,) A I1 g P U {-C} -

contk,2 (C, HI, P, V) A goal(A2 . PU { -C})

12

contk,2(C, H, P, V) A fact(A2, H2) A H2 C P U {"fC}
COntk,3 (C, H U H2. P, V) A goal(A:b. P U {-('})

contkm..l(C.H,P,I') A fact(A-. 1,Hm-) A H,- 1 C_ PU {-(} --
Co1t k,,, (C. H U H,,_ -,. P. V') A goal(.-A,,, . P u f -C'})

COfltk.,(C, H, P. I')Afact(Am,H,)AH,, C PU{-C} - fact(C.(HUH,1) -- •C)

A single-literal goal is translated to goal(G, 0), i.e., an assumption-free proof of G is sought.
Unification of members of Hi and PU{-'C} may be necessary to make C hold and unification
of members of H U H, with -,C may be necessary to derive facts with fewer assumptions.
If this rule is invoked by goal(G,P), it will derive literals of the form fact(G'.H). where
G' = Ga and H C Pa for some substitution a. Derived facts include only assumptions
that are used (those in H,), not all those that are permitted to be used (those in P). Thus.
equally general facts can be derived even if P has extra members.

The following instances of generalized subsumption are possible:

"* fact(L, H) subsumes fact(L',H'), where L' = La and H' D Ha for some substitution
c. Facts that are less general or require more assumptions can be deleted.

"* fact(L,H) subsumes goal(C.P) or contk.i(C,H',P,V), where C = La and P D Ha
for some substitution a. Such facts solve the goal without instantiating it.

" contkA(C, H, P, V) subsumes cont,,(C', H', P', 1'), where C' = Ca. H' _ Ha. P' =

Pa, and V' = Vcr for some substitution a7. Continuations that are less general or have
made more assumptions can be deleted.

In addition, standard model elimination pruning rules imply that

* goal(C, P) or contk(C, H, P, V) can be deleted if C E P, -,C E P. or P contains
complementary literals.

As an example, consider the proof that a A b follows from a V b, -,a V b, and a V -4b. The
problem is formulated with contrapositives as

a. -'a D b
b. -b D a
c. a D b
d. --b D --a
e. -a D -b
f. b D a
g. a A b D q

and the translation is

1: fact(x,{x})
2: goal(b. P) - goal(-'a, P u {-b})
3: goal(b,P) A f act(-,a, H1) A It C Pu {I-b} -f act(b, 11 - {-b})
4: goal(a, P) - goal(-b, P U I-,a))

13

5: goal(a, P) A fact(b, H) A H C PU {-a} -i fact(a, H - {-'a})
6: goal(b, P) - goal(a, P U {-fb})
7: goal(b, P) A fact(a, H) A H C P U {-fb} - fact(b, H - {-,b})
8: goal(-'a, P) - goal(-b, P U {a})
9: goal(-a, P) A fact(--b, H) A H C P U {a} - fact(-'a, H - {a})
10: goal(-ib, P) - goal(-,a. P U {b})
11: goal(-,b,P) A fact(-a,H) A H C PU {b} - fact(-4b,H - {b})
12: goal(a,P) , goal(b,P U {-fa})
13: goal(a,P) A fact(b,H) A H C P U {ia] - fact(a,H - {--a})
14: goal(q, P) -- goal(a, P U {-fq})
15: goal(q, P) A f act(a, H) A H C P U {-'q} -* contg,2(q, H, P)
16: contg.2(q, H, P) -- goal(b, P U {-fq})

17: cont,,2(q, H, P) A f act(b, H2) A H2 C Pu {-Uq) - fact(q, (H U H2) - {-q})

Execution of these rules leads to the following proof:

18: goal(q, 0) initial goal

19: goal(a, {-q}) subgoal of 18 by 14
20: goal(b, {--a, -q}) subgoal of 19 by 12

21: fact(b, {--a}) solution of 20 by 3,1
22: fact(a,0) solution of 19 by 13,21
23: fact(b, 0) solution of 20 by 7,22

24: cont9 ,2(q, 0, 0) continuation of 18 by 15,22
25: fact(q,O) solution of 18 by 17,23,24

Note that derived facts exactly correspond to lemmas in the model elimination proce-

dure: they are conditionally solved goals, where the conditions are negations of ancestor
goals used in their solution. Contrapositives of derived facts are also valid consequences, so
facts like fact(--b, {a, c}) can be automatically derived from fact(a, {b, c}), or the procedure
can be reformulated to use a neutral clause form fact({a,-'b,--c}) instead (this is done in
Demolombe's similar method [11]).

6 Abduction with Non-Horn Clauses

The case of abduction with non-Horn clauses is nearly identical to that of deduction. The
only change required is that assumptions are no longer restricted to those listed in goals
as being permitted because their negations appeared in ancestor goals. This restriction is
imposed by the test Hi C P. The test is modified in the case of abduction to apply only
to literals that are not abductively assumable: nonass(Hi) g P U {",C}. where nonass(H1)
is the largest subset of Hi that cannot be abductively assumed (those with nonassumable

predicate names). In other words, any abductively assumable literal in Hi need not appear
in P U {-fC}, but others must.

We summarize the treatment of assumptions in these procedures. In the Horn case of
abduction, fact(L, {L}) exists only for abductively assumable literals, so only they can be
assumed. In the non-Horn case of deduction, fact(x,{x}) exists and any literal can be
assumed, though top-down filtering permits only assumptions that match negated ancestor

14

goals to be used. In the non-Horn case of abduction, we again allow any literal to be
assumed, but omit the requirement to match assumptions with negated ancestor goals in
the case of abductively assumable literals.

Derivation of fact(Ga,H) is an abductive proof of G, provided H consists entirely of
abductively assumable literals. The procedure is complete: for any H and GO such that H
is composed of abductively assumable literals, H D GO is a consequence of theory T. and
H is consistent with T, this procedure can derive some fact(G'.H') such that G'a = GO
and HIoa C H for some substitution or.

7 Related Work

Demolombe [11] also developed upside-down meta-interpretation of the model elimination
theorem proving procedure. His method resembles the procedure in Section 5, but differs
in that

"* It uses literals like goal(a V -b V -'c) and fact(a V -b V -'c) instead of goal(a, {b.c})
and fact(a, {b,c)); contrapositives of facts are thus always available.

"* It uses rules like goal(C)Afact(Aj)A-.. Afact(Ai-1i) - goal(A,) to generate subgoals.
instead of using more concise continuation predicates.

"* It doesn't keep track of which permitted assumptions are actually used, so goal(avbvc)
can lead only to instances of fact(a V b V c) being derived, instead of the more general
fact(a), fact(a V b), etc., that can be derived if not all permitted assumptions are
used.

Plaisted and Greenbaum [34] developed an upside-down meta-interpretation method for
non-Horn clauses that is not based on the model elimination procedure. It doesn't require
contrapositives and represents clauses by A 1 A .. A Am D C1 V V V C,, where A1, . , A,
and C1 ,., ... C, are all atoms. However, only negative clauses are used as initial goals. A
key difference between their method and ours is that our translation yields a Horn set of
clauses. The advantage of this is that if hyperresolution is used to execute the clauses, only
single-literal results will be derived (though it must be said these single-literal facts or goals
may contain multiple literals from the problem and thus still have a clause interpretation).
Plaisted and Greenbaum's method requires derivation of non-unit positive clauses, such
as fact(a) V fact(b). They also developed an extension for equality, based on Brand's
modification method [4]-something we haven't done yet.

Upside-down meta-interpretation has been applied to Horn clause theorem proving in
Neiman's subgoal extraction method [25]. It closely resembles rewriting methods for query
evaluation, as do the Horn clause case in Section 3 and the Demolombe and the Plaisted and
Greenbaum methods restricted to Horn clauses. Neiman describes special data structures
for more efficient execution.

There is a vast literature on such upside-down meta-interpretation methods for query
evaluation in Horn clause databases. These methods (such as the magic set method) gen-
erally resemble each other abstractly, differing in details of the compilation and the extent
to which the input rules are partially evaluated. Bry demonstrated upside-down meta-
interpretation (i.e., rewriting-based query evaluation methods) and top-down evaluation

15

with lemmas (i.e., resolution-based query evaluation methods) are essentially equivalent
instances of his backward fixpoint procedure [5]. There has also been a lot of work that
extends magic sets to non-Horn deductive databases with negation as failure or closed world
rather than classical semantics for negation (e.g., [2, 14, 20]).

Our approach is to use bottom-up execution with top-down filtering. This is concep-
tually similar to the use of relevancy testing [45, 17] in the bottom-up SATCHMO [24]
and MGTP [161 theorem provers that employ hyperresolution and case-splitting on nonunit
derived clauses. The use of range-restricted clauses guarantees that positive clauses are
ground and makes case-splitting practical, since no variables are shared between cases. The
relevancy test requires that each literal of a derived clause be relevant to the goal and can
dramatically reduce the search space. The SATCHMO/MGTP approach appears to work
very well on naturally range-restricted problems-better than model elimination. Prob-
lems that are not range-restricted can be easily converted into those that are, but this
entails adding clauses that can generate all the terms of the Herbrand universe, and the
SATCHMO/MGTP approach is usually ineffective for such problems.

8 Conclusion

The model elimination procedure is an effective theorem-proving procedure whose principal
defect is the redundancy of its search space. Despite this defect, it has been used effectively
for theorem proving and recently for abductive and related inference. Model elimination is a
highly restrictive inference procedure that includes compatibility with set of support. This
goal-directedness is crucial in the presence of many irrelevant axioms. such as in deductive
database, logic programming, and artificial intelligence applications.

Upside-down meta-interpretation, the execution of the top-down model elimination pro-
cedure by a bottom-up interpreter like hyperresolution with subsumption, can basically
reproduce the model elimination search space while eliminating much of its redundancy.
Four variants of the method have been shown. The basic method for deduction with Horn
clauses resembles the magic set method for query evaluation in databases. Extensions deal
with non-Horn clauses and with abduction as well as deduction.

Upside-down meta-interpretation can be regarded as adding top-down filtering to a
bottom-up interpreter thus making it more goal-directed. Its principal contribution is in
applications with many irrelevant axioms, not for mathematical problems. Although non
goal-directed methods such as hyperresolution might seem naive even for mathematical
problems, they can actually be quite effective: when all the axioms are accessible from the
initial goal and general subgoals are quickly generated, the top-down filtering provided by
upside-down meta-interpretation is able to offer little or no goal-directedness.

The high inference rate and low memory consumption of top-down reasoning system
such as Prolog and PTTP are lost in this move to upside-down meta-interpretation. This
seems inevitable, since controlling redundancy requires storing more information about
goals, solutions, etc., and the volume of information stored demands efficient, but still slow
indexing. Efforts to make the inference rate of bottom-up interpreters more closely approach
that of top-down interpreters will make the upside-down meta-interpretation approach more
attractive. Writing a bottom-up interpreter specialized to the rules used in upside-down
meta-interplretation can also improve performance. Neiman did this in the case of deduction

16

with Horn clauses when implementing his subgoal extraction method.

Acknowledgements

I would like to express my appreciation to ICOT for providing a friendly and supportive
environment for doing this research and discussing and investigating many aspects of theo-
rem proving. I would like to thank Masayuki Fujita and Francois Bry for our discussions of
this work and Katsumi Inoue and Donald Loveland for their comments on an earlier draft
of this paper.

References

[1] Astrachan, O.L. and M.E. Stickel. Caching and lemmaizing in model elimination theo-
rem provers. Proceedings of the 11th International Conference on Automated Deduction,
Sarasota Springs, New York, June 1992.

[2] Balbin, I., G.S. Port, and K. Ramamohanarao. Magic set computation for stratified
databases. Technical Report 87/11, Department of Computer Science, University of
Melbourne, Melbourne, Australia, 1987.

[3] Bancilhon, F., D. Maier, Y. Sagiv, and J. Ullman. Magic sets and other strange ways
to implement logic programs. Proceedings of the Fifth ACM Symposium on Principles
of Database Systems, 1986, 53-56.

[4] Brand, D. Proving theorems with the modification method. SIAM Journal of Comput-
ing 4 (1975), 412-430.

[5] Bry, F. Query evaluation in recursive databases: bottom-up and top-down reconciled.
Data & Knowledge Engineering 5 (1990), 289-312.

[6] Charniak, E. and S. Husain. A new admissable heuristic for minimal-cost proofs. Pro-
ceedings of the AAAI-91 National Conference on Artificial Intelligence, Anaheim, Cal-
ifornia, July 1991.

[7] Charniak, E. and R. Goldman. A logic for semantic interpretation. Proceedings of the
26th Annual Meeting of the Association for Computational Linguistics, Buffalo, New
York, June 1988, 87-94.

[8] Cox, P.T. and T. Pietrzykowski. Causes for events: their computation and applications.
Proceedings of the 8th Conference on Automated Deduction, Oxford, England, July
1986, 608-621.

[9] deKleer, J. An assumption-based TMS. Artificial Intelligence 28 (1986), 127-162.

[10] deKleer, J. Extending the ATMS. Artificial Intelligencc 28 (1986), 163-196.

[11] Demolombe, R. An efficient strategy for non-Horn deductive databases. Theoretical
Computer Science 78 (1991), 245-259.

17

[121 Dietrich, S.W. Extension tables: memo relations in logic programming. Proceeding9 of
the 1987 Symposium on Logic Programming, San Francisco, California, August 1987,
264-272.

[13] Elkan, C. Conspiracy numbers and caching for searching and/or trees and theorem
proving. Proceedings of the Eleventh International Joint ConferTnce on Artificial In-
telligence, Detroit, Michigan, August 1989, 341-346.

[14] Fernindez, J.A. and J. Minker. Bottom-up evaluation of hierarchical disjunctive de-
ductive databases. Proceedings of the Eighth International Conference on Logic Pro-
gramming, Paris, France, 1991, 660-675.

[15] Finger, J.J. Exploiting Constraints in Design Synthesis. Ph.D. dissertation, Depart-

ment of Computer Science, Stanford University, Stanford, California, February 1987.

[16] Fujita, H. and R. Hasegawa. A model generation theorem prover in KL1 using a

ramified-stack algorithm. Technical Report TR-606, Institute for New Generation Com-
puter Technology, Tokyo, Japan, 1991.

[17] Fujita, M. Personal communication, 1991.

[18] Hobbs, J.R., M. Stickel, D. Appelt, and P. Martin. Interpretation as abduction. Techni-
cal Note 499, Artificial Intelligence Center, SRI International, December 1990. Revised
version to appear in Artificial Intelligence.

[19) Inoue, K. Consequence-finding based on ordered linear resolution. Proceedings of the

Twelfth International Joint Conference on Artificial Intelligence, Sydney. Australia.
August 1991.

[20] Kemp, D.B., P.J. Stuckey, and D. Srivastava. Magic sets and bottom-up evaluation of
well-founded models. Proceedings of International Symposium on Logic Programming,

1991.

[21] Kowalski, R.A. Problems and promises of computational logic. Proceedings of the First
Symposium on Computational Logic, 1990, 1-36.

[22] Loveland, D.W. A simplified format for the model elimination procedure. Journal of
the ACM 16, 3 (July 1969), 349-363.

[23] Loveland, D.W. Automated Theorem Proving: A Logical Basis. North-Holland. Am-
sterdam, the Netherlands, 1978.

[24] Manthey, R. and F. Bry. SATCHMO: a theorem prover in Prolog. Proceedings of the
9th International Conference on Automated Deduction, Argonne, Illinois, May 1988.

[25] Neiman, V.S. Refutation search for Horn sets by a subgoal-extraction method. Journal
of Logic Programming 9 (1990). 267-284.

[26] Ng, H.T. and R.J. Mooney. An efficient first-order abduction system based on the
ATMS. Proceedings of the AAAI-91 National Conference on Artificial Intelligence.
Anaheim, California, July 1991.

18

[27] Nie, X. and D.A. Plaisted. A complete semantic back chaining proof system. Proceed-
ings of the 10th International Conference on Automated Deduction, Kaiserslautern,

Germany, July 1990, 16-27.

[28] Norvig, P. Inference in text understanding. Proceedings of the AAAI-87 National Con-
ference on Artificial Intelligence, Seattle, Washington. July 1987.

[29] Peng, Y. and J.A. Reggia. A probabilistic causal model for diagnostic problem solving -

part I: integrating symbolic causal inference with numeric probabilistic inference. IEEE'
Transactions on Systems, Man, and Cybernetics SMC-17, 2 (March/April 1987). 146-
162.

[30] Peng, Y. and J.A. Reggia. A probabilistic causal model for diagnostic problem solving-
part II: diagnostic strategy. IEEE Transactions on Systems, Man, and Cybernetics

SMC-17, 3 (May/June 1987), 395-406.

[31] Pierce, C.S. Abduction and induction. In Buchler, J. (Ed.). Philosophical Writings of
Pierce. Dover Books, New York, 1955, pp. 150-156.

[32] Plaisted, D.A. Non-Horn clause logic programming without contrapositives. Journal of

Automated Reasoning 4, 3 (1988), 287-325.

[33] Plaisted, D.A. A sequent-style model elimination strategy and a positive refinement.
Journal of Automated Reasoning 6, 4 (December 1990), 389-402.

[34] Plaisted, D.A. and S. Greenbaum. Problem representations for chaining and equal-
ity in resolution theorem proving. Proceedings of the First Conference on Artificial
Intelligence Applications, Denver, Colorado, December 1984, 417-423.

[35] Poole, D. Explanation and prediction: an architecture for default and abductive rea-
soning. Computational Intelligence 5 (1989), 97-110.

[36] Pople, H.E., Jr. On the mechanization of abductive logic. Proceedings of the Third
International Joint Conference on Artificial Intelligence, Stanford, California, August

1973, 147-152.

[37] Przymusinski, T.C. An algorithm to compute circumscription. Artificial Intelligence

38, 1 (February 1989), 49-73.

[38] Robinson, J.A. Automatic deduction with hyper-resolution. International Journal of
Computer Mathematics, 1 (1965), 227-234.

[39] Shostak, R.E. Refutation graphs. Artificial Intelligence 7, 1 (Spring 1976), 51-64.

[40] Siegel, P. Representation et Utilisation de la Connaissance en Calcul Propositionnel.
Th~se d'Etat, Universit6 de Aix-Marseille II, 1987.

[41] Stickel, M.E. A Prolog technology theorem prover: implementation by an extended

Prolog compiler. Journal of Automated Reasoning 4, 4 (December 1988), 353-380.

19

[42] Stickel, M.E. A Prolog-like inference system for computing minimum-cost abductive
explanations in natural-language interpretation. Annals of Mathematics and Artificial
Intelligence 4 (1991), 89-106.

[43] Tamaki, H. and T. Sato. OLD resolution with tabulation. Proceedings of the Third
International Conference on Logic Programming, London, England, 1986, 84-98.

[44] Ullman, J.D. Principles of Database and Knowledge-Base Systems. Computer Science
Press, Rockville, Maryland, 1989.

[45] Wilson, D.S. and D.W. Loveland. Incorporating relevancy testing in SATCHMO. Tech-
nical Report CS-1989-24, Department of Computer Science Duke University. Durham,
North Carolina, November 1989.

[46] Wos, L., R. Overbeek, E. Lusk, and J. Boyle. Automated Reasoning. Prentice-Hall,
Englewood Cliffs, New Jersey, 1984.

20

